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PRESSURE RELAXATION IN A HOLE

SURROUNDED BY POROUS AND PERMEABLE ROCK

IN HOLE PRESSURE TESTS WITH GAS INJECTION

UDC 622.276.031V. Sh. Shagapov,1 I. G. Khusainov,2 and R. M. Khafizov2

The pressure testing of a hole in porous and permeable rock by gas injection is considered. An integral
equation for the hole pressure relaxation is obtained whose numerical and analytical solutions describe
the dependence of the relaxation time of hole pressure on the reservoir properties of the surrounding
porous rock as well as on the initial gas content and the initial pressure gradient in the hole.
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Introduction. Pressure testing is a conventional method for determining the tightness of hydraulic systems.
The main critical measure of the tightness of such systems is usually the satisfaction of certain permissible standards
(depending on the particular technological conditions) for the pressure release rates in a system, which are deter-
mined by the fluid leakage rate [1, 2]. It seems that this method is also suitable for a more careful analysis of the
state of wellbore zones in hydrodynamic tests of boreholes. After borehole pressure testing, the pressure relaxation
rate in boreholes surrounded by porous rock depends on the reservoir properties of the surrounding porous rock.
Hence, the pressure relaxation time can serve as a measure of, for example, the effective permeability coefficient
of the rock around the borehole. Furthermore, adding a gas phase during pressure testing and thus increasing the
elastic capacity of the medium in the borehole, it is possible to obtain characteristic relaxation time convenient for
the practical implementation of this method.

1. Constitutive Equations. In the initial state (t < 0), let the fluid pressure over the entire porous
bed around the hole be constant and equal to p′0 and the hole (a crack, cylindrical or spherical areas) be filled
with a fluid. At the time t = 0, the pressure in the hole is increased instantaneously to a value p0, for example,
by injecting a certain amount of gas. Next, because of fluid filtration to the surrounding porous space, the hole
pressure decreases to the value p′0.

In describing these processes, we adopt the following assumptions: the hole pressure is uniform, there are
no phase transitions and gas filtration through the walls of the hole, i.e., the mass of the gas in the hole remains
constant throughout the process. This implies that in the practical implementation of the method considered, the
gas phase should be in a special container which prevents it from entering the porous bed surrounding the hole (the
injected gas volume should only work as a spring, displacing the fluid from the hole). For the one-dimensional plane
problem, it is assumed that the hole (crack) walls are plane-parallel and the distance between them is far smaller
than the linear dimensions of the walls. Fluid filtration occurs only through the front wall, and the remaining parts
of the hole surface are impermeable. In the case of the radial problem, we assume that the length of the cylindrical
hole is much greater than its radius and that the hole ends are impermeable.

Under the assumptions adopted above, the conservation equation for the mass of the fluid in the hole, the
piezoconductivity equation, and the Darcy law for fluid filtration [3] are written as
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Here a is the radius of the hole, µl and ρ = ρl(1−αg) are the viscosity and density of the fluid, respectively,
αg is the volumetric fraction of the gas in the hole, κ = kρl0C

2
l /(mµl) is the piezoconductivity, m and k are the

porosity and permeability, Cl is the sound velocity in the fluid, p′ and u′ are the pressure and filtration rate around
the hole, u is the rate of fluid filtration through the hole walls, the superscripts n = 0, 1, 2 correspond to the
one-dimensional plane, radial, and spherical problems, respectively. The compressibility of the fluid in the hole and
in the porous bed is taken into account in the acoustic approximation, and the gas behavior follows a polytropic
law, then,

p = p0 + C2
l (ρl − ρl0), αg = αg0(p0/p)1/γ , (1.3)

where γ is the polytropic exponent and p0 is the initial hole pressure. Here and below, the superscript 0 corresponds
to the initial values.

The initial and boundary conditions for Eq. (1.2) are written as

p′ = p′0 (t = 0, r > a), p′ = p(t), u′ = u (t > 0, r = a). (1.4)

During pressure testing and in the subsequent period of pressure relaxation, the fluid density varies insignif-
icantly (ρl − ρl0 � ρl); therefore, on the right of Eq. (1.1), we ignore this variation, assuming that ρl = ρl0. Next,
integrating Eq. (1.1) over time from 0 to t, we have

ρl(1 − αg) − ρl0(1 − αg0) = −n+ 1
a
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u
∣
∣
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dt. (1.5)

Substituting the parameters ρl and αg from (1.3) into Eq. (1.5), we obtain the following dependence of the
hole pressure on the rate of fluid filtration through the hole walls:
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In the case of low pressure testing (∆p0 = p0 − p′0 � p0), linearization reduces Eq. (1.6) to the form
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.

2. One-Dimensional Plane Problem (n = 0, r = x). Using the Duhamel principle [4–7] for Eq. (1.2)
with the variable boundary conditions (1.4), we obtain the following solution for the pressure profile in a porous
bed around the hole:

p′ − p′0 =

t∫

0

∂U(x, t− t′)
∂t

(p(t′) − p′0) dt
′,

U(x, t) = Φ
( x− a

2
√

κ t

)

, Φ(ξ) = 1 − 2√
π

ξ∫

0

exp (−λ2) dλ (x > a, t > 0).

(2.1)

Here the function U(x, t) is a solution of the piezoconductivity equation (1.2) subject to constant boundary condi-
tions and zero initial conditions.
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Transforming Eq. (1.6) with the use of solution (2.1) and the Darcy law, we obtain the following integral
equation for the hole pressure relaxation:
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In the case of low pressure testing, this implies that

1 − ∆P =

t∫

0

∆P (t′)
√
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a2

κ
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Here ta is the characteristic time in which the pressure perturbation in the neighborhood of the hole propagates
over the porous bed for a distance of about half-width of the hole a (the radius in the radial and spherical cases).

Equation (2.3) has an analytical solution. Indeed, applying a Laplace transform, it is easy to obtain the
image

∆P̂ =
1

q +
√

q/t̃
, ∆P̂ =

∞∫

0

exp (−qt)∆P (t) dt.

This image is tabulated [8], and for the solution of the integral equation (2.3), we can write

∆P = exp (τ)Φ(
√
τ ) (τ = t/t̃). (2.4)

This solution coincides with the solution of the problem of cooling of an ideal heat conductor in a different
medium [9].

The pressure relaxation dynamics in the initial (τ � 1) and final (τ � 1) stages can be described by the
simpler relations

∆P = 1 − 2√
π

√
τ + τ +O(τ), ∆P =

1√
πτ

(

1 − 1
τ

+O
(1
τ

))

. (2.5)

Numerical analysis shows that the first formula of (2.5) is adequate for describing the hole pressure relaxation in the
initial stage up to τ ≈ 10−1, and the second formula for τ � 10. Using the second formula of (2.5), it is possible to
obtain a simple estimate for the time of full pressure relaxation in the hole tr. According to the solutions obtained,
the pressure relaxation, generally speaking, occurs in infinite time (tr → ∞). Therefore, here and below, as the
characteristic time of complete pressure relaxation, we use the time in which the dimensionless pressure gradient ∆P
in the hole decreases to ∆P = 10−2. Then, based on (2.5), the dimensionless relaxation time is τr ≈ 3200. From
this value of τr, it is easy to obtain the dependence of the dimensional relaxation time tr on the parameters of the
system:

tr = τrβ
2ta = τr

mµla
2

kρl0C2
l

[αg0 + γσ(1 − αg0)
γmσ

]2

. (2.6)

We note that according to (2.6), the relaxation time in all cases is inversely proportional to the permeability
coefficient.

We give some numerical estimates for the case of a hole containing the water–air system (ρl0 = 103 kg/m3,
Cl = 1.5 · 103 m/sec, and γ ≈ 1–1.4) at p′0 = 1 MPa. The dimensionless parameter σ ≈ 0.4 · 10−3. Therefore,
with the addition of a small gas volume (in this case, for αg0 � 10−3) the elastic capacity of the hole is completely
determined by the elastic capacity of the gas phase. For the low volumetric gas contents satisfying the condition
αg0 � σ, the presence of the gas has no effect on the hole pressure relaxation. In this case, from (2.6) we have

tr = τrµla
2/(mkρl0C

2
l ).

For the case of high pressure testing (∆p0 � p′0), calculations were performed using the integral equation (2.2).
The calculation algorithm was tested by the analytical solution (2.4). In Fig. 1, the solid curves show results of
numerical calculations for the pressure relaxation process at different initial pressures in the hole. The parameters
of the hole, porous bed, fluid, and gas have the following values: a = 10−2 m, m = 0.1, k = 10−12 m2, p′0 = 1 MPa,
ρl0 = 103 kg/m3, Cl = 1.5 · 103 m/sec, µl = 0.001 Pa · ,sec, and γ = 1.4. Unless otherwise specified, the same values
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Fig. 1. Pressure evolution in a hole with plane–parallel walls: the solid curves refer to the numerical
solutions of Eq. (2.2) and the dashed curves refer to the anaytical solution (2.4); curves 1, 2, and 3
refer to p0 = 2, 5, and 10 MPa, respectively.

Fig. 2. Relaxation time versus initial pressure gradient for a hole with plane–parallel walls for
αg0 = 10−3 (1) and 10−2 (2).

for the parameters of the hole–porous bed system are used in the subsequent numerical examples. In all versions, the
initial volumetric gas content is αg0 = 10−1. The dashed curves in Fig. 1 correspond to the analytical solution (2.4).
It is evident that in the case of low pressure testing (∆p0 = 1 MPa; curves 1), the analytical solution (2.4) is in good
agreement with the numerical solution of (2.2). However, as ∆p0 increases, the difference between these solutions
becomes larger. In particular, for ∆p0 = 9 MPa, as follows from the behavior of curves 3, the solution of the
linearized equation considerably overestimates the relaxation time in the final stage of the relaxation process. Here
we note that in the case of pressure testing without gas injection (αg0 = 0), the relaxation process for all initial
pressure gradients ∆p0 is described by the analytical solution (2.4). Thus, pressure testing with gas injection leads
to a considerable increase in the relaxation time due to both a direct increase in the elastic capacity of the hole
with gas injection and the nonlinear pressure dependence of the average density of the gas–fluid system in the hole.

Figure 2 shows curves of the relaxation time versus the initial pressure gradient ∆p0 (∆p0 = p0 − p′0) for
various initial volumetric gas contents. It is evident that the larger αg0, the stronger the dependence of the relaxation
time tr on the pressure gradient ∆p0. Here and below, in the construction of the solid curves, the relaxation time tr
corresponds to the period in which the value of ∆P decreases to 10−2; for the dashed curves, we use a physical
criterion according to which the relaxation time is the period in which the gradient ∆p decreases to ∆p∗ = 1 kPa
irrespective of the initial pressure gradient ∆p0. Thus, it follows from Fig. 2 that by these two criteria, the behavior
of the dependence of the relaxation time on the initial pressure gradient varies not only quantitatively but also
qualitatively. By the first criterion, this dependence decreases monotonically, whereas by the second criterion, it
increases. This difference in the behavior is due to a manifestation of the nonlinear nature of the relaxation process
with increasing initial pressure gradient ∆p0.

3. Radial Problem (n = 1). For the radial problem, the solution of Eq. (1.2) subject to conditions (1.4)
can also be written similarly to expressions (2.1). In this case, the function U has the form

U(r, t) =
1

2πi

σ+i∞∫

σ−i∞

exp (λt)K0(
√

λ/κ r)
K0(

√

λ/κ a)
dλ

λ
, (3.1)
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where K0(w) is a Macdonald function of zero order. As is known [9], function (3.1), in turn, can be written as

U(r, t) = 1 +
2
π

∞∫

0

exp
(

− z2t

ta

) J0(zr/a)Y0(z) − J0(z)Y0(zr/a)
J2

0 (z) + Y 2
0 (z)

dz

z
,

where J0(v) and Y0(v) are Bessel and Neumann functions of zero order. Then, the equation describing the pressure
evolution in a cylindrical hole becomes
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0 (z)
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z
.

(3.2)

In the case of low pressure testing (∆p0 = p0 − p′0 � p0) from Eq. (3.2) we have

1 − ∆P =
1
βta

t∫

0

ϕ
( t− t′

ta

)

∆P (t′) dt′. (3.3)

Applying a Laplace transform to Eq. (3.3), we obtain

∆P =
1
π

∞∫

0

φ sin ξt− ψ cos ξt
ξ(φ2 + ψ2)

dξ,

where

φ = 1 +
8
π2β

∞∫

0

v dv

(ξ2t2a + v4)(J2
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0 (v))
, ψ =

8ξta
π2β
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0
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v(ξ2t2a + v4)(J2
0 (v) + Y 2

0 (v))
.

The solution of this equation is cumbersome but does not involve serious difficulties.
The core of the integral equation (3.2) for small values of the argument can be expanded as follows [9]:

ϕ(S) =
2√
πS

+ 1 − 1
2

√

S

π
+
S

4
+ . . . .

For large values of the argument, the following formula is valid:

ϕ(S) = 4/ ln (4S/Γ), Γ = exp (2C), C = 0.577 22 . . . .

Here C is the Euler constant.
According to [10], for the time interval 0 < t � 10ta, we can use the following approximation for the core:

ϕ(S) = 2/
√
πS + 1.

In this case, the integral equation (3.3) becomes

1 − ∆P =
1
βta

t∫

0

(

1 +
2

√

π(t− t′)/ta

)

∆P (t′) dt′. (3.4)

The solution of Eq. (3.4) can be written as

∆P = Re {[β+ exp (β2
+τ)Φ(β+

√
τ) − β− exp (β2

−τ)Φ(β−
√
τ )]/(β+ − β−)},

β− = 1 −
√

1 − β, β+ = 1 +
√

1 − β.
(3.5)

Solution (3.5) describes the dynamics of the initial stage of pressure relaxation in the hole. If the relaxation
time tr satisfies the condition tr � 10ta, this solution can be used for the entire period of relaxation. In this case,
for the final relaxation stage, τr ≈ 1/β or tr ≈ βta.
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Fig. 3. Effect of the initial pressure in a cylindrical hole on the pressure relaxation dynamics: the
solid curves refer to the numerical solutions of Eq. (3.2); the dashed curves refer to the numerical
solutions (3.3); curves 1, 2, and 3 refer to p0 = 2, 5, and and 10 MPa.

Fig. 4. Relaxation time in a cylindrical hole versus initial pressure gradient for αg0 = 10−3 (curves 1),
10−2 (curves 2), and 10−1 (curves 3).

Thus, solution (3.5) can be used during the entire period of relaxation provided that β � 10. From an
analysis of formula (2.3) for β, it follows that the condition β � 10 is reached in the case of pressure testing without
gas injection. For αg0 = 0, we have β = 1/m; therefore, for the porous bed, we have m � 10−1.

For the final stage of the pressure relaxation, a somewhat different approximate analytical solution can be
constructed. We assume that in this stage, beginning with a certain time t∗ (t > t∗), the current pressure gradient
in the hole and the rate of liquid flow through the hole walls satisfy the expression

u
∣
∣
∣
r=a

=
2(p− p′0)k

µla ln (4t/(Γta))
, (3.6)

which follows from the well-known self-similar solution [11] for t� ta. Then, substituting (3.6) into (1.1) for n = 1,
we obtain a solution in the form of the following quadrature for the final stage of pressure relaxation:

p∫

p∗

(1 − αg)/C2
l + ρlαg/(γp)

p− p′0
dp = −4kρl0

a2µl

t∫

t∗

dt′

ln (4t′/(Γta))
. (3.7)

Here p∗ is the hole pressure at the time t = t∗, αg and ρl are the pressure functions from (1.3). In the case of low
pressure testing, from (3.7), we have

∆p = ∆p∗ exp
(

− 4
βta

t∫

t∗

dt′

ln (4t′/(Γta))

)

, ∆p∗ = p∗ − p′0.

Figure 3 shows the pressure relaxation dynamics in a cylindrical hole of radius a = 10−1 m for αg0 = 10−1

and various initial pressures. It is evident that in the case of a cylindrical hole, the solution of the linearized
equations (3.3) underestimates the relaxation time compared to the numerical solution of the general nonlinear
equation (3.2) and this difference becomes larger with increasing p0.
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Fig. 5. Pressure relaxation in a spherical hole at p0 = 2 (1), 5 (2) and 10 MPa (3): the solid curves
refer to the numerical solution of (4.2) and the dashed curves refer to the analytical solution (3.5)
with the dimensionless parameters (4.4).

Figure 4 gives curves of the relaxation time versus initial pressure gradient for various initial volumetric gas
contents. It is evident that in the case of a cylindrical hole, the relaxation time also depends strongly on the initial
gas content. Unlike in the plane case, this dependence increases monotonically for both the first and second criteria.

4. Spherical Problem (n = 2). As in the previous two cases, the solution for a spherical hole can be
written as (2.1); in this case,

U(r, t) =
a

r
Φ

( r − a

2
√

κt

)

. (4.1)

Taking into account (4.1), we obtain the following integral equation for the pressure relaxation in a spherical hole:

αg0

((p0

p

)1/γ

− 1
)

− p− p0

ρl0C2
l

(

1 − αg0

(p0

p

)1/γ)
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3k
a2µl

t∫

0

(

1 +
1

√

π(t− t′)/ta

)

(p(t′) − p′0) dt
′. (4.2)

In the case of low pressure testing (∆p0 = p0 − p′0 � p0), we have

1 − ∆P =
3
βta

t∫

0

(

1 +
1

√

π(t− t′)/ta

)

∆P (t′) dt′. (4.3)

Ignoring unity compared to the second term of the core of the integral equation (4.3), we obtain an equation
similar to (2.3) for the initial stage of pressure relaxation (t � ta). In this case, the coefficient on the right side is
equal to three. Consequently, in a spherical hole, the pressure relaxation rate in the initial stage is higher than that
in the previous two cases.

Equation (4.3) has an exact analytical solution which is similar in form to (3.5); in this case, for the
dimensionless parameters, we have

β− = (3/2)(1 −
√

1 − 4β/3), β+ = (3/2)(1 +
√

1 − 4β/3). (4.4)

Figure 5 gives curves which illustrate the pressure relaxation dynamics in a spherical hole of radius a = 1 m
for an initial volumetric gas content of αg0 = 10−1. We note that the data given in the figure agree qualitatively
with the results for the case of a cylindrical hole.
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Conclusions. Hole pressure testing by injection of a certain amount of gas increases the elastic capacity of
the hole, which, in turn, leads to an increase in the characteristic pressure relaxation time. The nonlinear nature of
the relaxation process is manifested as the initial pressure gradient ∆p0 is increased. Therefore, in hydrodynamic
pressure tests of open boreholes (aimed for example at determining the permeability coefficient), gas injection and
variation of the initial pressure gradient ∆p0 enable one to control the characteristic pressure relaxation time.
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